
USB-I2C - USB to I2C Communications Module
Technical Specification

The USB-I2C module provides a complete interface between your PC and the I2C bus. The module is self powered from the USB cable and can
supply up to 70mA at 5v for external circuitry from a standard 100mA USB port. The module is an I2C master only, not a slave.

First Step - Get The Drivers
The USB-I2C module uses the FTDI FT232R USB chip to handle all the USB protocols. The documentation provided by FTDI is very complete,
and is not duplicated here. Before using the USB-I2C, you will need to install FTDI's Virtual COM Port (VCP) Drivers. These drivers appear to
the system as an extra Com Port (in addition to any existing hardware Com Ports). Application software accesses the USB device in the same
way as it would access a standard Windows Com Port using the Windows VCOMM API calls or by using a Com Port Library. Drivers are
available for Windows, Apple, Linux and Open BSD systems directly from the FTDI website. You should get and install the drivers now, before
you connect the USB-I2C to your computer. The Drivers page is here.

Which COM port?
After installing the drivers, and plugging in the USB-I2C module to a spare USB port, you will want to know which COM port it has been
assigned to. This will vary from system to system depending on how many COM ports you currently have installed. To find out where it is, right
click on your "My Computer" desktop icon and select the "Device Manager" tab. Now scroll down and open the "Ports (COM & LPT)" tab. You
should see the USB serial port listed - COM2 in the example below. If you want to change the COM port number - just right click on it, select
properties, select advanced and select the COM port number from the available list. The COM port should be set up for 19200 baud, 8 data bits, no
parity and two stop bits.

Connections

0v ground
Input 1

SCL I/O2
SDA I/O3

5v

The diagram below shows the I2C connections.

0v Gnd
The 0v Gnd pin must be connected to the 0v (Ground) on your I2C device.

Input 1
The Input 1 pin is actually the processor reset line and is used in our workshop to program the processor after final assembly. The reset function
has been disabled in software so that this pin may be used as an input pin. It has a 47k pull-up resistor on the PCB, so if the input is not required
you can just ignore it.

SCL and SDA
These pins are the I2C bus connections. They should be connected directly to the SCL and SDA pins on your I2C device. The USB-I2C module is
always a bus master, and is fitted with 4.7k pull-up resistors on the PCB.

+5v
The +5v supply from the USB-I2C module can supply up to 70mA to external devices. If your I2C device requires more than this, or has its own
supply, then leave the +5v pin unconnected. Do not apply your own 5v supply to this pin.

Commands

Command Value Description
Available in I2C-USB

Version
I2C_SGL 0x53 Read/Write single byte for non-registered devices, such as the Philips PCF8574 I/O chip. All
I2C_MUL 0x54 Read multiple bytes without setting new address (eeprom's, Honeywell pressure sensors, etc). V5 and higher

I2C_AD1 0x55
Read/Write single or multiple bytes for 1 byte addressed devices (the majority of devices will use

this one)
All

I2C_AD2 0x56
Read/Write single or multiple bytes for 2 byte addressed devices, eeproms from 32kbit (4kx8)

and up.
V6 and higher

I2C_USB 0x5A
A range of commands to the USB-I2C module, generally to improve selected communications or

provide analogue/digital I/O
All

The USB-I2C module takes care of all the I2C bus requirements such as start/restart/stop sequencing and handles the acknowledge cycles. You
only need supply a string of bytes to tell the module what to do. These are the Command byte, the devices I2C Address, 0,1 or 2 bytes for the
devices Internal Register Address, 0 or 1 byte Data Byte Count, followed when writing, with the Data Bytes. In its simplest form, this is just 2
bytes - 0x53, 0x41 which reads the inputs on a PCF8574 I/O expander and returns 1 byte, as detailed below.

Writing a single byte to I2C devices without internally addressable registers
These include devices such as the Philips PCF8574 I/O expander. Following the I2C_SGL you send the devices I2C address and the data byte.

Primary USB-I2C command Device Address + R/W bit The data byte
Byte Type I2C_SGL Addr+R/W Data

Example 0x53 0x40 0x00
Meaning Direct Read/Write command PCF8574 I2C address Set all bits low

This 3 byte sequence sets all bits of a PCF8574 I/O expander chip low. All 3 bytes should be sent to the USB-I2C in one sequence. A gap will
result in the USB-I2C re-starting its internal command synchronization loop and ignoring the message. After all bytes have been received the
USB-I2C performs the IC2 write operation out to the PCF8574 and sends a single byte back to the PC. This returned byte will be 0x00 (zero) if the
write command failed and non-zero if the write succeeded. The PC should wait for this byte to be returned (timing out after 500mS) before
proceeding with the next transaction.

Reading a single byte from I2C devices without internally addressable registers
This is similar to writing, except that you should add 1 to the device address to make it an odd number. To read from a PCF8574 at address 0x40,
you would use 0x41 as the address. (When the address goes out on the I2C bus, its the 1 in the lowest bit position that indicates a read cycle is
happening). Here is an example of reading the inputs on a PCF8574 I/O expander:

I2C_SGL PCF8574 I2C address + Read bit
0x53 0x41

The USB-I2C module will perform the read operation on the I2C bus and send a single byte (the PCF8574 inputs) back to the PC. The PC should
wait for the byte to be returned (timing out after 500mS) before proceeding with the next transaction.

Reading multiple bytes from I2C devices without setting a new address
This is used for devices that do not have an internal register address but returns multiple bytes. Examples of such devices are the Honeywell
ASDX DO series pressure sensors. This command can also be used for devices that do have an internal address which it increments automatically
between reads and doesn't need to be set each time, such as eeproms. In this case you would use command I2C_AD1 or I2C_AD2 for the first
read, then I2C_MUL for subsequent reads. Here is an example of reading the two byte pressure from the Honeywell sensor.

I2C_MUL ASDX I2C address + Read bit Number of bytes to read
0x54 0xF1 0x02

The USB-I2C will perform the read operation on the I2C bus and send two bytes back to the PC - high byte first in this example for the ASDX
sensor. The PC should wait for both bytes to be returned (timing out after 500mS) before proceeding with the next transaction.

Writing to I2C devices with a 1 byte internal address register
This includes almost all I2C devices. Following the I2C_AD1 command you send the device I2C address, then the devices internal register address
you want to write to and the number of bytes you're writing. The maximum number of data bytes should not exceed 64 so as not to overflow the
USB-I2C's internal buffer.

Primary USB-I2C
command

Device Address + R/W
bit

Device internal register Number of data bytes The data bytes

Byte Type I2C_AD1 Addr+R/W Reg Byte Count Data
Example 0x55 0xE0 0x00 0x01 0x51

Meaning
Primary USB-I2C

command
SRF08 I2C address SRF08 command Reg

One command byte
follows

Start ranging in cm

This 5 byte sequence starts an SRF08 at address 0xE0 ranging. All 5 bytes should be sent to the USB-I2C in one sequence. A gap will result in the
USB-I2C re-starting its internal command synchronization loop and ignoring the message. After all bytes have been received the USB-I2C
performs the IC2 write operation out to the SRF08 and sends a single byte back to the PC. This returned byte will be 0x00 (zero) if the write
command failed and non-zero if the write succeeded. The PC should wait for this byte to be returned (timing out after 500mS) before proceeding
with the next transaction.
Here is another write example - this time an 8 byte sequence to initialize the MD22 motor driver:

I2C_AD1
MD22

Addr+R/W
Mode Reg Data byte count MD22 mode 1

Left Motor
Stopped

Right Motor
Stopped

Fast acceleration

0x55 0xB0 0x00 0x04 0x01 0x00 0x00 0x02

Again the USB-I2C will respond with non-zero if the write succeeded and zero if it failed. A failure means that no acknowledge was received from
the I2C device.

Reading from I2C devices with a 1 byte internal address register
This is similar to writing, except that you should add 1 to the device address to make it an odd number. To read from an SRF08 at address 0xE0,
you would use 0xE1 as the address. (When the address goes out on the I2C bus, its the 1 in the lowest bit position that indicates a read cycle is
happening). The maximum number of data bytes requested should not exceed 60 so as not to overflow the USB-I2C's internal buffer. Here is an
example of reading the two byte bearing from the CMPS03 compass module:

I2C_AD1 CPMS03 I2C address + Read bit CMPS03 bearing register Number of bytes to read
0x55 0xC1 0x02 0x02

The USB-I2C will perform the read operation on the I2C bus and send two bytes back to the PC - high byte first. The PC should wait for both
bytes to be returned (timing out after 500mS) before proceeding with the next transaction.

Writing to I2C devices with a 2 byte internal address register
This is primarily for eeprom's from 24LC32 (4k x 8) to 24LC1024 (2 * 64k x 8). Following the I2C_AD2 you send the device I2C address, then
the devices internal register address (2 bytes, high byte first for eeprom's) and then the number of bytes you're writing. The maximum number of
data bytes should not exceed 64 so as not to overflow the USB-I2C's internal buffer.

Primary USB-I2C
command

Device Address +
R/W bit

High byte of internal
Address

Low byte of internal
Address

Number of data bytes The data bytes

Byte
Type

I2C_AD2 Addr+R/W Address High Address Low Byte Count Data

Example 0x56 0xA0 0x00 0x00 0x40 0xnn

Meaning
Primary USB-I2C

command
24LC32 I2C address Address 0x0000 Address 0x0000

One command byte
follows

64 (0x40) data
bytes

This 69 byte sequence writes the last 64 bytes to address 0x0000 in the eeprom. All 69 bytes should be sent to the USB-I2C in one sequence. A
gap will result in the USB-I2C re-starting its internal command synchronization loop and ignoring the message. After all bytes have been received
the USB-I2C performs the IC2 write operation out to the eeprom and sends a single byte back to the PC. This returned byte will be 0x00 (zero) if
the write command failed and non-zero if the write succeeded. The PC should wait for this byte to be returned (timing out after 500mS) before
proceeding with the next transaction.

Reading from I2C devices with a 2 byte internal address register
This is similar to writing, except that you should add 1 to the device address to make it an odd number. To read from an eeprom at address 0xA0,
you would use 0xA1 as the address. (When the address goes out on the I2C bus, its the 1 in the lowest bit position that indicates a read cycle is
happening). The maximum number of data bytes requested should not exceed 64 so as not to overflow the USB-I2C's internal buffer. Here is an
example of reading 64 (0x40) bytes from internal address 0x0000 of an eeprom at I2C address 0xA0.

I2C_AD2 Device I2C address + Read bit High byte of internal Address Low byte of internal Address Number of bytes to read
0x56 0xA1 0x00 0x00 0x40

The USB-I2C will perform the read operation on the I2C bus and send 64 bytes back to the PC. The PC should wait for all 64 bytes to be returned
(timing out after 500mS) before proceeding with the next transaction.

USB-I2C Commands
The USB-I2C command format is shown below:

I2C_USB USB-I2C Command Data 1 Data2
 0x5A See below Command Specific Command Specific

The USB-I2C commands are always a four byte sequence. They start with the I2C_USB primary command which is followed by the USB-I2C
command itself. Two data bytes follow which can be any junk if not used, but they must be included to make up the 4 byte command sequence.
These commands are:

Hex Command
Bytes

returned
Purpose

0x01 REVISION 1 Returns the USB-I2C firmware revision number
0x02 NEW_ADDRESS 1 Changes SRF08 I2C address
0x03 UNUSED 1 Unused - for CM02 compatibility only - returns 0x00
0x04 SCAN1 6 Send motor data - return battery, compass & sonar data
0x05 SCAN2 9 Same but for 2 SRF08's
0x06 SCAN3 12 3 SRF08's
0x07 SCAN4 15 4
0x08 SCAN6 21 6
0x09 SCAN8 27 8
0x0A SCAN12 39 12
0x0B SCAN16 51 All 16 possible SRF08's
0x10 SETPINS 1 Sets I/O pins high/low
0x11 GETPINS 1 Gets the status of I/O pins
0x12 GETAD 4 Gets Analogue value on I/O2 and I/O3

REVISION is used to read the USB-I2C firmware revision. It returns a single byte indicating the revision number. The two data bytes are unused
and can be anything, but they must be sent.
NEW_ADDRESS command is used to change an SRF08's I2C address to a different address. The new address should be in the first of the two
data bytes. The second data byte is unused and can be anything, but it must be sent. Changing the address on the SRF08 requires 4 separate
transactions on the I2C bus. The USB-I2C know how to change an SRF08's I2C address and just needs you to send it the new address using this
command. When using it, make sure you only have one SRF08 connected, otherwise you will set every SRF08 on the bus to the same address. The
single return byte is the new address sent back when the task is complete.
UNUSED Unused - for CM02 compatibility only - returns 0x00.
SCAN This command is provided for CM02 compatibility. It assumes you have an MD22 motor controller, a CMPS03 compass module and a
number of SRF08 rangefinders. SCAN1 assumes 1 SRF08, SCAN8 assumes 8 SRF08's. The two data bytes contain the Left and Right motor
speed values for the MD22 motor controller. After sending the new motor speeds to the MD22, the USB-I2C will send a return frame comprising
the battery voltage (0x00 - see above). This is followed by two bytes of compass bearing - high byte first, and then three bytes for each SRF08.
The first of the three bytes is the SRF08's light sensor reading. The next two bytes is the range - high byte first.
For example, if the SCAN2 command is used, you would receive a 9 byte return:

Battery Volts
(reads 0x00)

Compass
bearing high

byte

Compass
bearing low

byte

SRF08 at 0xE0
Light sensor

SRF08 at 0xE0
Range high

byte

SRF08 at 0xE0
Range low byte

SRF08 at 0xE2
Light sensor

SRF08 at 0xE2
Range high

byte

SRF08 at 0xE2
Range low byte

SRF08 data is always returned starting with address 0xE0, 0xE2, 0xE4 - going up one address at a time until all requested SRF08's data has been
sent.
After sending the data back up to the PC, the USB-I2C automatically issues a new ranging command to all SRF08s. The ranging command used is
82 (0x52) which returns the results in uS. To convert to cm divide by 58 and to convert to inches divide by 148.
SRF08 addresses should have been set up before running this command and the MD22 should be initialized to the mode and acceleration required.
One more important feature. The SCAN command also sets up a 500mS timer on the USB-I2C. If another SCAN command is not received within
this time, a command is automatically sent to the MD22 to stop the motors. This is to prevent your robot wandering out of control if it ventures
outside of the range of the radio link.

LEDs
There are two status Leds on the USB-I2C. A red Led indicates power is on and the green Led flashes briefly when a command is received. The
red Led can be turned on and off using the SETPINS command. See below.

I/O Pins
If the USB-I2C module is not being used for I2C, it can be used as general purpose I/O controller with three I/O lines. Input 1 is always an input
only pin and has a 47k pull-up resistor (not 4.7k like the others). The other two can be input or output. The outputs are set high/low with the
SETPINS command. The pin is not actively driven high, it is released and pulled high by a 4.7k resistor. Output low is actively driven and can sink
a maximum of 24mA. GETPINS will return the status of the I/O pins. To use an I/O pin as an input, it must first have a 1 (high) written to it. This
will release the pin so that the 4.7k resistor will pull it high, it can then be used as an input. Both SETPINS and GETPINS commands will return
the status of the I/O Pins, however, only SETPINS can change them. The bits in the data byte written by SETPINS and returned by SETPINS and
GETPINS have the following format:

7 6 5 4 3 2 1 0
x x x x I/O3 I/O2 Input1 Red Led

The following command will turn the Red led off and make the I/O lines high so they can be used as inputs:

USB-I2C_CMD SETPINS Command Data 1 Data2
 0x5A 0x10 0x0E 0x00 (unused)

Analogue Inputs
The USB-I2C module can also convert the analogue values on pins I/O2 and I/O3. Before doing this the I/O pins should be set high, effectively
making them inputs. Remember though that this is primarily a USB to I2C interface and as such has 4k7 pull-up resistors. Take this into account
when connecting your analogue input.

The following command will fetch the analogue values:

USB-I2C_CMD GETAD Command Data 1 Data2
 0x5A 0x12 0x00 (unused) 0x00 (unused)

With analogue data returned in the following format:

Byte 1 Byte 2 Byte 3 Byte 4
I/O2 High Byte I/O2 Low Byte I/O3 High Byte I/O3 Low Byte

The analogue inputs use 10-bit conversion, so you will see values from 0 to 1024 (0x0000 to 0x03FF)

Note - you cannot mix I/O mode and I2C mode, I/O commands should not be used when I2C devices are connected.

USB-I2C Test Software
To help you test and get the USB-I2C up and running quickly, we have provided a couple of simple test programs. The first is for the USB-I2C
connected to an SRF08 ultrasonic ranger.

The connector on the USB-I2C module may be soldered directly to the SRF08 as shown, or you can use a cable if preferred. The USB-I2C module
can easily supply the 25mA peak of the SRF08. The software automatically searches for the SRF08 and displays its I2C address, along with
revision number, range and light sensor reading. You can download usb_i2c_srf08.exe and the C source code here.

The second is for testing I/O modes, and allows you to set/clr the I/O's as well as read the digital and analogue inputs.

You can download usb_i2c_io.exe and the C source code here.

We also have a general purpose USB-I2C Interface for testing of your I2C products and a usb-i2c_interface_guide to assist you.

Dimensions

www.pishrobot.com

