
SRF485 Ultrasonic range finder
Technical Specification

Overview
The SRF485 is a single transducer ultrasonic ranger, based on our original SRF02 design. The SRF485 uses the RS485 standard for communications,
for up to 127 modules on each RS485 bus. The SRF485 features an on-board 5v power regulator which can be supplied from 8vdc to 24vdc. (30vdc
absolute max.) Both power and RS485 signals are supplied to the module via a 10pin IDC connector, making cabling a large number of modules very
easy. The Range of the SRF485 is 30cm to 5meters.

RS485 Communication
The SRF485 modules are connected using the RS485 bus. Up to 128 transceivers can be connected to the same bus, so you can have up to 127
SRF485 modules plus the controller.
Serial data is fixed at 38400 baud 1 start, 2 stop and no parity bits. Control of the SRF485's is by sending frames of data to the module and then
listening for the response. Each SRF485 has a unique 24-bit address which we program in during manufacture and is written on the module. The data
frame you send to the SRF485 is:

Break - is defined as a continuous low in excess of 22 bit periods, followed by a high of 2 bit periods. Each bit is 26uS at 38400 baud, so 22 * 26uS =
572uS, it's ok to be longer.
Command - is one of a number of commands that the SRF485 will respond to. See below for details.
AddressH,M,L - is the 24-bit address of the module you wish to communicate with.
Data - Is the data you wish to send to the module, zero (0x00) if nothing is required by the command.
Chksum - is the 1's compliment (bitwise negation) of the sum of all the previous bytes (not counting the break).

The module will respond with a variable number of bytes, 0 to 4 depending on the command, but the transmit frame is always the same, a break
followed by 6 bytes. See Commands section below for details.

Connections
The connections to the SRF485 are shown below. There are 4 pins for the 12vdc supply, these are connected together on the PCB. The two pins in the
middle are the RS485 signals, + is nearest the edge of the PCB and - is on the inside. The last 4 pins are 0v Ground and are connected together on the
PCB. There is a 4 pin connector which is designed to connect Led's. The Anode is connected to the Led(x) pin and the Cathode to ground. There is a
390 ohm resistor for each Led already on the PCB.

Specification
Voltage - 8vdc - 24vdc
Current - 10mA

Range - 30cm - 5meters
Temperature Compensation - -30 to +50 centigrade

Size - 38mm x 38mm (1.5" x 1.5")

Mounting - 30.5mm x 30.5mm (1.2" x
1.2")

Transducer - 16mm dia. centrally mounted.

Break Command AddressH AddressM AddressL Data Check Sum

Commands
To send a command to the SRF485, you need to send a data frame as described above. There are three commands to initiate a ranging (80 to 82), to
produce the result in inches, centimeters or microseconds. These three commands don't Transmit the result back to your controller. You should wait
70mS and then use command 94 to get the result of the ranging. Another set of three commands (83 to 85) do the same, but also transmits the
temperature compensated result of the ranging back to your controller as soon as it is available. Together, these six commands (80 - 85) are called
"Real" because they perform a complete ranging. There is another set of six commands (86 - 91) called "Fake". They are the same as the "Real"
commands except that they do not send the 8-cycle burst out. These are used where the burst has been transmitted by another sonar. It is up to you to
synchronize the commands to the two sonar's. There is a command (92) to transmit a burst without doing the ranging.
Command 93 is used to get the SRF485 version. This command will return 4 bytes:
Byte1 is the module type, 0x01 for the SRF485.
Byte2 is the Hardware Version, 0x03 for the current PCB.
Byte3 is the Software Version, currently 10.
Byte4 is the Modules Group number, this will be in the range 0x00 to 0x7F (0-127).
Command 94 gets returns two bytes (high byte first) from the most recent ranging. Put them together to make a 16-bit result.

Here is an example of sending a ranging command to a SRF485 located at address 0189AB.

The check Sum is calculated as the low byte of ~(0x51+0x01+0x89+0xAB+0x00)
0x51+0x01+0x89+0xAB+0x00 = 0x0186
The bitwise not of 0x0186 is 0xFE79
We use the low byte of that, 0x79
The above command will start the SRF485 at 0x0189AB ranging in centimeters. After 70mS the result will be available. You should then use the
GET RANGE command (0x5E) to retrieve the result.

Here is another example, this time to set Led1 on, and Led's 2,3 off.

Command Bytes
Returned ActionDecimal Hex

80 0x50 0 Real Ranging Mode - Result in inches
81 0x51 0 Real Ranging Mode - Result in centimeters
82 0x52 0 Real Ranging Mode - Result in micro-seconds
83 0x53 2 Real Ranging Mode - Result in inches, automatically Tx range back to controller as soon as ranging is complete.

84 0x54 2 Real Ranging Mode - Result in centimeters, automatically Tx range back to controller as soon as ranging is
complete.

85 0x55 2 Real Ranging Mode - Result in micro-seconds, automatically Tx range back to controller as soon as ranging is
complete.

86 0x56 0 Fake Ranging Mode - Result in inches
87 0x57 0 Fake Ranging Mode - Result in centimeters
88 0x58 0 Fake Ranging Mode - Result in micro-seconds
89 0x59 2 Fake Ranging Mode - Result in inches, automatically Tx range back to controller as soon as ranging is complete.

90 0x5A 2 Fake Ranging Mode - Result in centimeters, automatically Tx range back to controller as soon as ranging is
complete.

91 0x5B 2 Fake Ranging Mode - Result in micro-seconds, automatically Tx range back to controller as soon as ranging is
complete.

92 0x5C 0 Transmit an 8 cycle 40khz burst - no ranging takes place
93 0x5D 4 Get Version - sends a 4 bytes back to the controller
94 0x5E 2 Get Uncompensated Range, returns two bytes (high byte first) from the most recent ranging.

100 0x64 1 Set Led's - Bit 0 controls Led1 - bit set and the Led is on. Bit 1 controls Led2. Bit 2 controls Led3
101 0x65 0 Set Search Mode - Used to search for SRF485's on the bus
102 0x66 0 or 1 Less Than - Used to search for SRF485's on the bus
103 0x67 0 Set Group - Sets the group number (0-127) that this sonar belongs to.
104 0x68 2 Get Temperature - returns the temperature in degrees centigrade, as a 16bit signed word, high byte first
105 0x69 2 Get temperature compensated range, returns two bytes (high byte first) from the most recent ranging.

Break Command AddressH AddressM AddressL Data Check Sum
 600uS Low
50us High 0x51 0x01 0x89 0xAB 0x00 0x79

The SET LEDS command will return a single byte, 0x01, as an acknowledge.

Addressing
Each SRF485 has a unique 24-bit address programmed into it during manufacture. This address is written on the module, and can also be found by
doing a search, see below. There are a number of addresses that selected commands will respond to. These are:
Its own unique address, an SRF485 will respond to most commands to its own address.
Address 0x000000, used where you need all SRF485's to respond to a command, such as start ranging, or setting search mode.
Address 0x000001, used where you need all SRF485's belonging to a specified group to respond to a command, such as start ranging,
Every Address, only the LESS_THAN command will respond to this, and only if its internal address is less than the one you send.

Groups
You can ignore the groups feature if you do not require it.
Each SRF485 sonar can belong to a "group". The purpose is to allow a selected range (or group) of SRF485's to all start ranging at the same time. It is
similar to sending a ranging command to address zero, which causes all SRF485's to start ranging. A potential problem with this is if the SRF485's are
too close together, they may interfere with each other. By arranging alternate SRF485's to be in a different group, you can have, say, units 1,3,5,7 etc
ranging, and next time units 2,4,6,8 ranging.
Even if your SRF485's are not close enough to interfere, groups have the advantage of allowing you to do the ranging on one group, whilst getting the
ranges from the previous group, which makes more effective use of the busses bandwidth. To set the group number, send the SET_GROUP command
(0x67) to the SRF485's actual address. The group number is stored in EEPROM, and only has to be sent once. This example sets the group number of
the sonar at address 0x0189AB to 0x01.

To start all SRF485's in group 0x01 ranging, send your chosen ranging command to address 0x000001 with the group number in the data byte, like
this:

The default group number is 0x00, so I would recommend that you avoid using that one in your application.

Searching the RS485 bus for Sonar's
The SET_SEARCH command (0x65) is used to place all SRF485's on the bus into a search mode, and must be used at address zero (0x000000) to do
that. Only SRF485's that are in search mode will respond to the LESS_THAN command. The following will place all SRF485's into "search mode".

The LESS THAN command is used to search for and find the addresses of all SRF485's on the bus. Every SRF485 whose unique internal address is
less than the address supplied with the command will respond by sending back a single byte (0x00). They do this all at the same time, so you will just
receive a single byte. Those SRF485's whose address is equal to, or greater than the supplied address will not respond. For example if you send this
command frame:

Then all SRF485's whose internal address is in the range 0x000000 to 0x7FFFFF will send back the response byte. The value of the response byte is
0x00, but that is irrelevant. It is the presence or absence of a response that is important. The response, if there is one, will be immediate so if you have
not received anything after 500uS, then you're not going to. Make sure you time out in your receive routine.
So how do you use this to find the addresses of all SRF485's on the bus?
First, the SET_SEARCH command must be sent to address 0x000000 so that all SRF485's are placed into search mode.
This is where it gets a little harder to follow:
Send the LESS_THAN command with address 0x800000. If you get a response then there are one or more SRF485's whose address is between
0x000000 and 0x7FFFFF. Now you can narrow it down further by sending the LESS_THAN command with address 0x400000. If you get a response
then you know there are one or more SRF485's between addresses 0x000000 and 0x3FFFFF. If you didn't get a response then the address would be
between 0x400000 and 0x7FFFFF. If there was a response, do it again with address 0x200000. If not then address 0x600000. This is similar to the
way an Analog to Digital converter works, by successive approximation. Using this technique any address can be found in 24 steps. The SRF485
found will be the one with the lowest address. Once found you should read the version of that SRF485 using the GET_VER command. This will reset
the search mode for that SRF485, so it will take no further part in the search process.
Now you can repeat the process to find the next SRF485, and so on...

It's a lot harder to say than it is to do, the code is actually quite simple. Here is the core routine to do the job, written in c. It assumes the
SET_SEARCH command has already been sent.

Break Command AddressH AddressM AddressL Data Check Sum
 600uS Low
50us High 0x64 0x01 0x89 0xAB 0x01 0x65

Break Command AddressH AddressM AddressL Data Check Sum
 600uS Low
50us High 0x67 0x01 0x89 0xAB 0x01 0x62

Break Command AddressH AddressM AddressL Data Check Sum
 600uS Low
50us High 0x51 0x00 0x00 0x01 0x01 0xAC

Break Command AddressH AddressM AddressL Data Check Sum
 600uS Low
50us Higher 0x65 0x00 0x00 0x00 0x00 0x9A

Break Command AddressH AddressM AddressL Data Check Sum
 600uS Low
50us High 0x66 0x80 0x00 0x00 0x00 0x19

long Find_SRF485(void)
{

We also have an example for the PC written in VC++ V6 here. You will need our USB-RS485 module to use it.

long Walk = 0x800000; // used as a bit walker to calc next address to search
long Addr = 0x800000; // start by looking for 0-7fffff range
char x;

 do {
 SendFrame(LESS_THAN, Addr, 0); // All SRF485's whose address is less than Addr, will respond
 x = serin485(); // this times out after 500uS and returns 0xFF
 if(x==0) Addr ^= Walk; // Must be greater or equal to Walk, so merge
 Walk >>= 1; // shift the bit walker
 Addr |= Walk; // and generate next test address
 }
 while(Walk); // repeat until the full address of SRF485 is found

 SendFrame(GET_VER, Addr, 0); // Get the version of this SRF485 to reset its search mode.
 serin485(); // module id - just get and discard these.
 serin485(); // hardware version
 serin485(); // software version
 serin485(); // group number
 return Addr; // Return the SRF485's address, it will be 0xFFFFFF if none
found
}

