
CMUcam5 Pixy

Overview

• Small, fast, easy-to-use, low-cost, readily-available vision system
• Learns to detect objects that you teach it
• Outputs what it detects 50 times per second
• Connects to Arduino with included cable. Also works with Raspberry Pi, BeagleBone and similar

controllers
• All libraries for Arduino, Raspberry Pi, etc. are provided
• C/C++ and Python are supported
• Communicates via one of several interfaces: SPI, I2C, UART, USB or analog/digital output
• Configuration utility runs on Windows, MacOS and Linux
• All software/firmare is open-source GNU-licensed
• All hardware documentation including schematics, bill of materials, PCB layout, etc. are provided

How Pixy got started

Pixy (CMUcam5) is a partnership between the Carnegie Mellon Robotics Institute and Charmed Labs. Pixy
comes from a long line of CMUcams, but Pixy got its real start as a Kickstarter campaign. It first started
shipping in March of 2014, but it's already become the most popular vision system in history! Pixy is
funded exclusively through sales, so thank you for making Pixy a success! You can watch the original
Kickstarter video below -- it's a good introduction!

Vision as a Sensor

If you want your robot to perform a task such as picking up an object, chasing a ball, locating a charging
station, etc., and you want a single sensor to help accomplish all of these tasks, then vision is your sensor.
Vision (image) sensors are useful because they are so flexible. With the right algorithm, an image sensor can
sense or detect practically anything. But there are two drawbacks with image sensors: 1) they output lots of
data, dozens of megabytes per second, and 2) processing this amount of data can overwhelm many
processors. And if the processor can keep up with the data, much of its processing power won't be available
for other tasks.

Pixy addresses these problems by pairing a powerful dedicated processor with the image sensor. Pixy
processes images from the image sensor and only sends the useful information (e.g. purple dinosaur
detected at x=54, y=103) to your microcontroller. And it does this at frame rate (50 Hz). The information is
available through one of several interfaces: UART serial, SPI, I2C, USB, or digital/analog output. So your
Arduino or other microcontroller can talk easily with Pixy and still have plenty of CPU available for other
tasks.

It's possible to hook up multiple Pixys to your microcontroller -- for example, a robot with 4 Pixys and 360
degrees of sensing. Or use Pixy without a microcontroller and use the digital or analog outputs to trigger
events, switches, servos, etc.

Controller support

Pixy can easily connect to lots of different controllers because it supports several interface options (UART
serial, SPI, I2C, USB, or digital/analog output), but Pixy began its life talking to Arduinos. Over the last
several months we've added support for Arduino Due, Raspberry Pi and BeagleBone Black. Software libraries
are provided for all of these platforms so you can get up and running quickly. Additionally, we've added a
Python API if you're using a Linux-based controller (e.g. Raspberry Pi, BeagleBone).

Purple dinosaurs (and other things)

Pixy uses a color-based filtering algorithm to detect objects. Color-based filtering methods are popular
because they are fast, efficient, and relatively robust. Most of us are familiar with RGB (red, green, and
blue) to represent colors. Pixy calculates the color (hue) and saturation of each RGB pixel from the image
sensor and uses these as the primary filtering parameters. The hue of an object remains largely unchanged
with changes in lighting and exposure. Changes in lighting and exposure can have a frustrating effect on
color filtering algorithms, causing them to break. Pixy’s filtering algorithm is robust when it comes to
lighting and exposure changes.

Seven color signatures

Pixy remembers up to 7 different color signatures, which means that if you have 7 different objects with
unique colors, Pixy’s color filtering algorithm will have no problem identifying them. If you need more than
seven, you can use color codes (see below).

Hundreds of objects

Pixy can find literally hundreds of objects at a time. It uses a connected components algorithm to
determine where one object begins and another ends. Pixy then compiles the sizes and locations of each
object and reports them through one of its interfaces (e.g. SPI).

50 frames per second

What does “50 frames per second” mean? In short, it means Pixy is fast. Pixy processes an entire 640x400
image frame every 1/50th of a second (20 milliseconds). This means that you get a complete update of all
detected objects' positions every 20 ms. At this rate, tracking the path of falling/bouncing ball is possible.
(A ball traveling at 30 mph moves less than a foot in 20 ms.)

Teach it the objects you're interested in

Pixy is unique because you can physically teach it what you are interested in sensing. Purple dinosaur? Place
the dinosaur in front of Pixy and press the button. Orange ball? Place the ball in front of Pixy and press the
button. It’s easy, and it's fast.

More specifically, you teach Pixy by holding the object in front of its lens while holding down the button
located on top. While doing this, the RGB LED under the lens provides feedback regarding which object it is
looking at directly. For example, the LED turns orange when an orange ball is placed directly in front of
Pixy. Release the button and Pixy generates a statistical model of the colors contained in the object and
stores them in flash. It will then use this statistical model to find objects with similar color signatures in its
frame from then on.

Pixy can learn seven color signatures, numbered 1-7. Color signature 1 is the default signature. To teach
Pixy the other signatures (2-7) requires a simple button pressing sequence.

PixyMon lets you see what Pixy sees

PixyMon is an application that runs on Windows, MacOs and Linux. It allows you to see what Pixy sees,
either as raw or processed video. It also allows you to configure your Pixy, set the output port and manage
color signatures. PixyMon communicates with Pixy over a standard mini USB cable.

PixyMon is great for debugging your application. You can plug a USB cable into the back of Pixy and run
PixyMon and then see what Pixy sees while it is hooked to your Arduino or other microcontroller -- no need
to unplug anything. PixyMon is open source, like everything else.

Technical specs

• Processor: NXP LPC4330, 204 MHz, dual core
• Image sensor: Omnivision OV9715, 1/4", 1280x800
• Lens field-of-view: 75 degrees horizontal, 47 degrees vertical
• Lens type: standard M12 (several different types available)
• Power consumption: 140 mA typical
• Power input: USB input (5V) or unregulated input (6V to 10V)
• RAM: 264K bytes
• Flash: 1M bytes
• Available data outputs: UART serial, SPI, I2C, USB, digital, analog
• Dimensions: 2.1" x 2.0" x 1.4
• Weight: 27 grams

What’s a “color code”?

A color code (CC) is two or more color tags placed close together. Pixy can detect and decode CCs and
present them as special objects. CCs are useful if you have lots of objects you want to detect and identify
(i.e. more than could be detected with the seven separate color signatures alone.)

A color code scheme with 2 tags and 4 different colors can differentiate up to 12 unique objects. CCs with
3, 4 and 5 tags and/or more different colors are possible and can allow for many, many more unique
objects. (In fact, thousands of unique codes are possible by using CCs with 5 tags and 6 colors.)

Why Color Codes?

CCs are useful if you have lots of objects you want to detect and identify, more than could be detected
with the seven separate color signatures alone. CCs also improve detection accuracy by decreasing false
detections. That is, there is a low probability that specific colors will occur both in a specific order and
close together. The drawback is that you need to place a CC on each object you’re interested in detecting.
Often the object you’re interested in (yellow ball, purple toy) has a unique color signature and CCs aren’t
needed. Objects with CCs and objects without CCs can be used side-by-side with no problems, so you are
free to use CCs for some objects and not others.

CCs give you an accurate angle estimate of the object (in addition to the position and size). This is a
computational “freebie” that some applications may find useful. The angle estimate, decoded CCs, regular
objects and all of their positions and sizes are provided at 50 frames per second.

CCs might be particularly useful for helping a robot navigate. For example, an indoor environment with CCs
uniquely identifying each doorway and hallway would be both low-cost and robust.

Face detection

Face detection will be released soon as a new version of firmware -- stay tuned! And when it's released, all
Pixy owners will have a new sensor (a face detector!) And we'll continue to improve and add new
capabilities to Pixy as long as, you know, people buy it.

For more information on Pixy, go here.

